Three-dimensional Desingularized Boundary Integral Methods for Potential Problems
نویسندگان
چکیده
The concept of desingularization in three-dimensional boundary integral computations is re-examined. The boundary integral equation is desingularized by moving the singular points away from the boundary and outside the problem domain. We show that the desingularization gives better solutions to several problems. As a result of desingularization, the surface integrals can be evaluated by simpler techniques, speeding up the computation. The effects of the desingularization distance on the solution and the condition of the resulting system of algebraic equations are studied for both direct and indirect versions of the boundary integral method. Computations show that a broad range of desingularization distances gives accurate solutions with significant savings in the computation time. The desingularization distance must be carefully linked to the mesh size to avoid problems with uniqueness and ill-conditioning. As an example, the desingularized indirect approach is tested on unsteady non-linear three-dimensional gravity waves generated by a moving submerged disturbance; minimal computational difficulties are encountered at the truncated boundary.
منابع مشابه
Accuracy of desingularized boundary integral equations for plane exterior potential problems
In this article, computational results from boundary integral equations and their normal derivatives for the same test cases are compared. Both kinds of formulations are desingularized on their real boundary. The test cases are chosen as a uniform flow past a circular cylinder for both the Dirichlet and Neumann problems. The results indicate that the desingularized method for the standard bound...
متن کاملCALCULATION OF NON LIFTING POTENTIAL FLOW USING DESINGULARIZED CAUCHY\'S FORMULA
This paper discusses the disturbance velocity and potential as well as the total velocity formulation for non lifting potential flow problem. The problem is derived based on the Cauchy method formulation. The adding and subtracting back technique is used to desingularize the integral equations. The desingularized boundary integral equations are then discretized. The discretized equations can be...
متن کاملA General Boundary-Integral Formulation for Zoned Three-Dimensional Media
A new boundary-integral formulation is proposed to analyze the heat transfer in zoned three-dimensional geometries. The proposed formulation couples the boundary formula, the gradient of the boundary formula, and the exterior formula. An advantage of this formulation over the traditional methods is that any linear condition at the interface between subdomains may be incorporated into the formul...
متن کاملSolving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods
In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...
متن کاملON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY
The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...
متن کامل